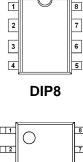
SMTOS

Charge Pump DC-DC Voltage Converter

■ INTRODUCTION

SMP7660 is a charge pump dc-to-dc voltage converter using CMOS technology and optimization design. It converters a +2.5V to +10V input to a corresponding -2.5V to -10V output using only two low cost external capacitors. The on-board oscillator operates at a nominal frequency of 10KHz. Operation below 10 KHz (for lower supply current applications) is possible by connecting an external capacitor from OSC to ground.

■ FEATURES

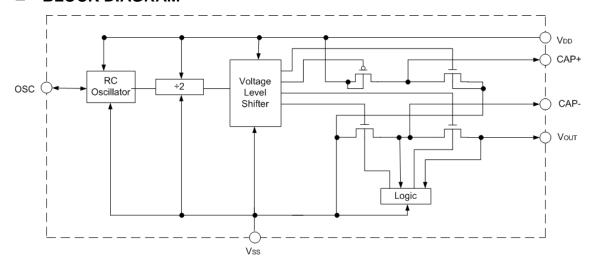

- Wide input voltage range: 2.5V~10V
- Low power supply: 50uA @ 5V input
- Efficient voltage conversion:99.9%
- Good power efficiency: 98%
- Easy to use: only two external capacitors required
- Compatible with RS232 negative power supply standard
- Cascade connection(two devices are connected, V_{OUT} = -2V_{DD} or -3V_{DD})
- Available in SOP8&DIP8 Packages

■ APPLICATIONS

- RS-232 Power Supply
- LCD Display Module
- Supply Voltage Splitter V_{OUT}=±V_{DD}/2
- Operation Amplifier Supply
- Instrument Product Supply
- Negative Supply for dynamic RAMS

1/8

■ PIN CONFIGURATION



ш		8
2		7
3		6
4		5

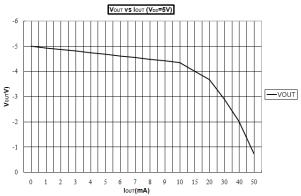
SOP8

PIN NUMBER	PIN NAME	DESCRIPTION		
1	NC	No connection		
2	CAP+	Connecting external capacitor(+) pin		
3	Vss	Ground pin		
4	CAP-	Connecting external capacitor(-) pin		
5	V _{OUT}	Voltage output pin		
6	LV	Low voltage selection pin		
7	OSC	Connecting oscillation capacitor pin		
8	V_{DD}	Power supply pin		

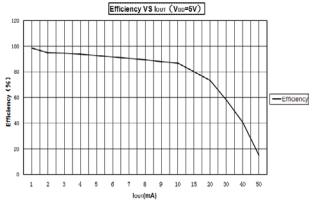
■ BLOCK DIAGRAM

■ ABSOLUTE MAXIMUM RATINGS

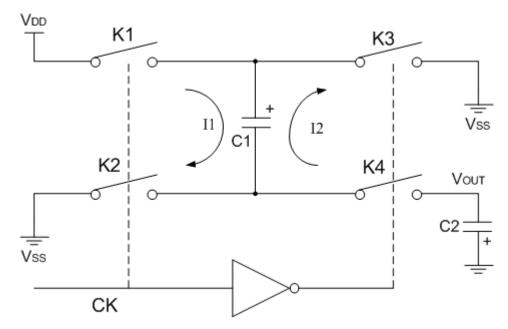
PARAMETER		SYMBOL	RATINGS	UNITS
Input voltage		V_{DD}	13	V
Power	Power SOP8		500	mW
Dissipation	DIP8	P _D	500	mW
Operating Temperature		T _{opr}	-40~+85	°C
Storage Temperature		T _{stg}	-55~+150	°C
Soldering temperature and time		T _{solder}	260°C, 10s	


■ ELECTRICAL CHARACTERISTICS

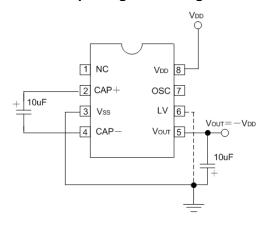
(C1=C2=10 μ F, Ta=25 $^{\circ}$ C)

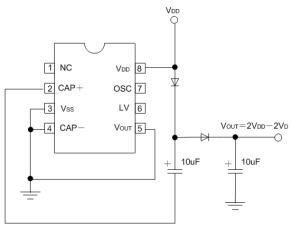

SYMBOL	ITEM	TEST CONDITIONS		MIN	TYP	MAX	UNITS
STWIDUL		V_{DD}	CONDITIONS	WIII		WAX	OMITO
V_{DD}	Supply Voltage		_	2.5	5.0	10.0	V
IQ	Supply Current	5V	R _L =∞		50	100	uA
fosc	Oscillator Frequency	5V	_		10		KHz
R _{OUT}	Output Resistance	5V	I _{OUT} =20mA		60	100	Ω
V _{CON-EFF}	Voltage Conversion Efficiency	5V	R _L =∞	99	99.9	_	%
P _{EFF}	Power Efficiency	5V	RL=5kΩ	96	98	_	%

■ TYPICAL CHARACTERISTICS

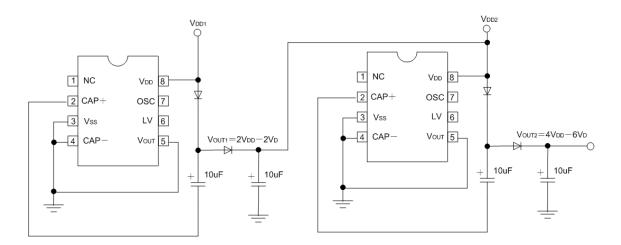

1. Vout vs. lout

2. Efficiency vs. I_{OUT}

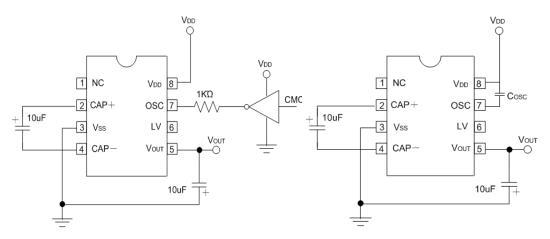

■ THEORY OF OPERATION


SMP7660 together with two external capacitors C1、C2 complement a voltage Inverter. Capacitor C1 is charged to a voltage V_{DD} , for the first half cycle when switches K1 and K2 are closed (while switches K3 and K4 are open during this half cycle); During the second half cycle of operation, switches K3 and K4 are closed, with K1 and K2 open, thereby shifting capacitor C2 negatively to $-V_{DD}$.

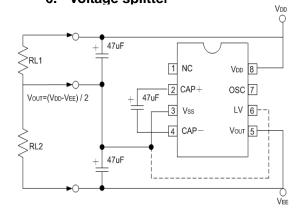
■ TYPICAL APPLICATIONS


1. Simple negative voltage converter

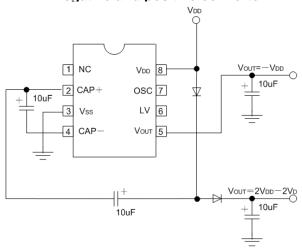
2. Positive voltage doubler

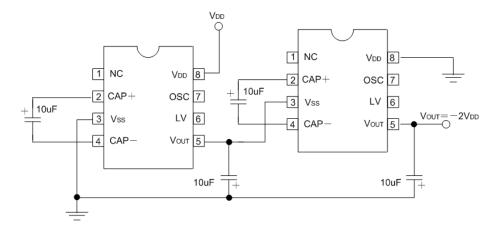


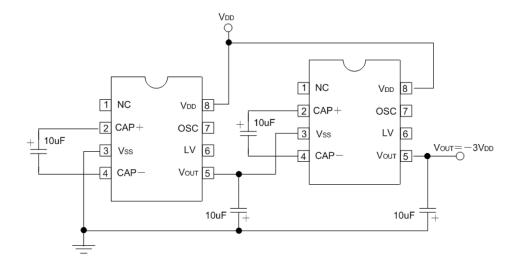
3. Positive voltage multiplier



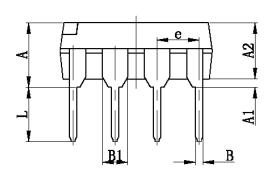
4. External switching frequency

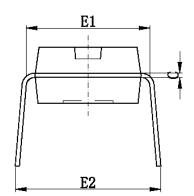

5. Lower switching frequency

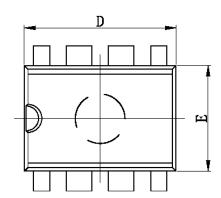

6. Voltage splitter


7. Negative and positive converter

8. -2V_{DD} voltage multiplier

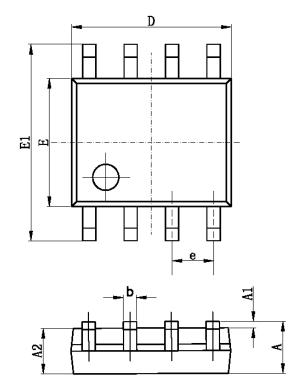


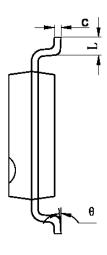

9. -3V_{DD} voltage multiplier



■ PACKAGING INFORMATION

• DIP8





Symbol	Dimensions In	n Millimeters	Dimensions In Inches		
	Min	Max	Min	Max	
Α	3. 710	4. 310 0. 146		0. 170	
A1	0. 510		0. 020		
A2	3. 200	3. 600	0. 126	0. 142	
В	0. 380	0. 570	0. 015	0. 022	
B1	1. 524 (BSC)		0. 060 (BSC)		
С	0. 204	0. 360 0. 008		0. 014	
D	9. 000	9. 400	0. 354	0. 370	
E	6. 200	6. 600	0. 244	0. 260	
E1	7. 320	7. 920	0. 288	0. 312	
е	2. 540 (BSC)		0. 100 (BSC)		
L	3. 000	3. 600	0. 118	0. 142	
E2	8. 400	9. 000	0. 331	0. 354	

• SOP8

Symbol	Dimensions In	n Millimeters	Dimensions In Inches		
	Min	Max	Min	Max	
A	1. 350	1. 750	0.053	0.069	
A1	0. 100	0. 250	0.004	0. 010	
A2	1. 350	1. 550	0.053	0. 061	
b	0. 330	0. 510	0. 013	0. 020	
С	0. 170	0. 250	0.006	0. 010	
D	4. 700	5. 100	0. 185	0. 200	
Е	3. 800	4. 000	0. 150	0. 157	
E1	5. 800	6. 200	0. 228	0. 244	
е	1. 270 (BSC)		0. 050 (BSC)		
L	0. 400	1. 270	0. 016	0. 050	
θ	0°	8°	0°	8°	

© SMTES TECHNOLOGY PTE. LTD.

SMTES cannot assume responsibility for use of any circuitry other than circuitry entirely embodied in a SMTES product. No circuit patent license, copyrights or other intellectual property rights are implied. SMTES reserves the right to make changes to their products or specifications without notice. Customers are advised to obtain the latest version of relevant information to verify, before placing orders, that information being relied on is current and complete.

